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Ecosystems in focus for climate change mitigation
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Distribution of carbon in coastal ecosystems
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Data summarized in Crooks et al., 2011; Murray et al., 2011, Donato et al., 2011
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Rates of Wetland Loss

Ecosystem  Global Annual Rate Total Stock Reference

Extent Of Loss (%) (top meter) (stock estimates)
(km?) Pg C

Tidal Marsh 1.9 5
400,0007?

Mangrove Donato et al
160.000 1-2 14.7 - 73.0 2011

Seagrass 300- Fourqurean et
600,0007? 1-2 15.4- 30.8 al. 2012

Estimate of global emissions 0.15 — 1.0 Pg CO, / yr (Pentleton et al. in press)
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Long-term release of carbon from organic soils

Pre-1880: Freshwater Tidal Marsh

Land Subsidence in the Delta
Delta Atlas reprinted 1995
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Emissions fiom One Diained Wetland:
Sacramento-San Joaguiin Delta

w Cadlba o
Area under agriculture 180,000 ha

Rate of subsidence (in) 1 inch

5 million tCO,/ yr
released from Delta

1 GtCO, release in c.150 years

4000 years of carbon emitted
Equiv. carbon held in 25% of
California’s forests

Accommodation space: 3 billion m?
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CO, Emissions from drained coastal wetlands (million tons)
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Mangrove Cleared 29 CO2 efflux Lovelock et al.
(Belize) 2011
Mangrove Forest damaged 15 Inferred from peat Cahoon et al.
(Honduras) by hurricane collapse 2003
Mangrove Drained for 32 Peat collapse and Couwenburg et
(Australia) agriculture CO2 efflux al. 2010
FWT marsh Drained for 6-40 Peat collapse and Rojstaczer &
(California) agriculture CO2 efflux Deverel 1993;
Deverel &

Leighton 2010;
Hatala et al. 2011

FWT marsh Drained for 92 + 55 Peat collapse and Camporese et al.

(Po Delta) agriculture CO2 efflux 2008; Zanello et
al.2011
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What about remaining wetlands?
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Current Projections Future Projections uture Projections
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Future Projections Future Projections
® 2030 @ 2050 @2070 ©2090 2 @ 2030 2050 #2070 #2090
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Stralsburg et al. 2011



Large-scale
Emissions, or
not?

Lake
Borgne

Wetland loss:
100 km? /yr

If top 50 cm erodes
then 27.5TgCO,
Released in to

Breton Land Loss 1932- 2050

Sound
* The Land Loss between 1932-2000 is historical.
The Land Loss between 2000-2050 is projected
based on historical trending if no further action is
taken as documented in the “Historical and Projected
\ Coastal Louisiana Land Changes: 1978-2050"
N\ faL acoastgoviLacal istori pd)

A tr/iq/lz/'ayva-- W

C i rC U I a t i O n ~B(z):_ 5 . (Bafg;;mz
But what is its fate??? o R e \
117‘.;:‘7.11115' " Gulf of Mexico N v
o W = & “Fourchon . ;'/
P el 7

0 7.5 15 225 30

— m— [ilOmeters

7 0 7 14 21 28
----—_—_ Miles s 7 9 <
Coastal Louisiana has lost an average of 34 square miles of land, primarily
marsh, per year for the last 50 years. From 1932 to 2000, coastal Louisiana
lost 1,900 square miles of land, roughly an area the size of the state of Delaware.
If nothing more is done to stop this land loss, Louisiana could potentially lose
approximately 700 additional square miles of land, or an area about equal to
the size of the greater Washington D.C.- Baltimore areq, in the next 50 years.
Data Sources:
1932-1956 Land Change Analysis
U.S. Army Corps of Engineers, New Orleans
' 1956-1990 Land Change Analysis
- > = » 1978-2050 Land Change Analysi:
N For more information about the land loss analysis or to see an us geparln:;ns ofthe Interior
e .o . ~ o S. Geological Survey
1 animated time series of wetland change, Natondl Wellands Research Center
G Lafayette, LA

visit www. LaCoast.gov/LandLoss
Prepared by:

U.S. Department of the Interior

U'S. Geological Survey

National Wetlands Research Center

Lafayette, LA

Map 1D: USGS-NWRC 2005-16-0001
Map Date: December 6, 2004
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CO,, CH, and N,O fluxes in wetlands across salinity
gradients and under ranging conditions of nitrogen
loading.

GHG fluxes for undisturbed, converted and restoring
wetlands

Wetland carbon stocks - better global coverage

Fate of C & N released from eroding wetlands

Contribution of DOC to global warming
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GHG emissions / reductions with landscape change —
wetland migration, conversion.

Process-based models to understand science of C&N
cycling (e.g. DNDC)

Simplified monitoring approaches / indicators

Default factors of emissions and removals with activities.
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Intact and degraded salt marsh and seagrasses

Subclasses of coastal wetlands (can we connect to
cover to geomorphology and below ground processes?)

Drained wetlands, soil classification (C%)
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Information needs - technology
= Near surface atmospheric GHG monitoring
= High resolution surface elevation mapping

= Less costly monitoring equipment
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